Lieutenant General Donald Putt, Air Force Director of Research and Development, sent a letter to Dr. Hugh Dryden, Director of NACA, inviting NACA participation in the Air Force effort in the manned ballistic rocket program. Dr. Dryden informed the Air Force that NACA was preparing manned spacecraft designs for submission in March 1958.
Air Force headquarters instructed the Air Research and Development Command to expedit man-in-space projects. Air Force headquarters instructed the Air Research and Development Command, in collaboration with the National Advisory Committee for Aeronautics to " expedite the evaluation of existing or planned projects, appropriate available proposals and other competitive proposals with a view to providing an experimental system capable of an early flight of a manned vehicle making an orbit of the earth." Furthermore, it was asserted that it was "vital to the prestige of the nation that such a feat be accomplished at the earliest technically practicable date--if at all possible before the Russians. " It was therefore important that the evaluation determine whether the objective of a manned space flight could be accomplished more readily under the Dyna Soar program or by means of an orbiting satellite. The minimum time to the first orbital flight and the associated costs were to be determined. The approach to this objective was also to furnish tangible contributions to the over-all Air Force astronautics program. Furthermore, the hazard accompanying such a flight was to be the minimum dictated by sound engineering and experimental flight safety practices. If at all possible, pilot safety was to be secured by furnishing an emergency escape system. (Ltr, Lt Gen D. L. Putt, DCS/D, Hq USAF, to Cmdr, ARDG, 31 Jan 58, subj: Advanced Hypersonic Research Aircraft.)
Air Research and Development Command headquarters directed the Wright Air Development Center to "investigate and evaluate" the quickest way to put a man in space and recover him. Since the crux of the problem was the obvious lack of large high performance booster, the center requested the assistance of the Air Force Ballistic Missile Division in finding a solution to the problem., (Chronological Space History, 1958, prep by AFBMD.)
Ham, a 37-pound chimpanzee, was aboard the spacecraft. The over-acceleration of the launch vehicle coupled with the velocity of the escape rocket caused the spacecraft to attain a higher altitude and a longer range than planned. In addition, the early depletion of the liquid oxygen caused a signal that separated the spacecraft from the launch vehicle a few seconds early. However spacecraft recovery was effected, although there were some leaks and the spacecraft was taking on water. Ham appeared to be in good physiological condition, but sometime later when he was shown the spacecraft it was visually apparent that he had no further interest in cooperating with the space flight program. Despite the over-acceleration factor, the flight was considered to be successful.
An Air Force Atlas D/Agena A was launched from Vandenberg and successfully placed the SAMOS II satellite into orbit. This was the last Air Force use of an Agena A upper stage vehicle. First generation photo surveillance; radio relay of images; micrometeoroid impact data. Poor results.
Manned Spacecraft Center notified Marshall Space Flight Center, Huntsville, Alabama (which was responsible for managing NASA's Agena Programs) that Project Gemini required 11 Atlas-Agenas as rendezvous targets and requested Marshall to procure them. The procurement request was accompanied by an Exhibit 'A' describing proposed Gemini rendezvous techniques and defining the purpose of Project Gemini as development and demonstrating Earth-orbit rendezvous techniques as early as possible. If feasible, these techniques could provide a practical base for lunar and other deep space missions. Exhibit B to the purchase request was a Statement of Work for Atlas-Agena vehicles to be used in Project Gemini. Air Force Space Systems Division, acting as a NASA contractor, would procure the 11 vehicles required. Among the modifications needed to change the Atlas-Agena into the Agena rendezvous vehicle were: incorporation of radar and visual navigation and tracking aids; main engines capable of multiple restarts; addition of a secondary propulsion system, stabilization system, and command system; incorporation of an external rendezvous docking unit; and provision of a jettisonable aerodynamic fairing to enclose the docking unit during launch. The first rendezvous vehicle was to be delivered to the launch site in 20 months, with the remaining 10 to follow at 60-day intervals.
Smirnov only wants to fly two, not four Vostoks this year. One male, and one female cosmonaut would be launched in a group flight. Correct approvals cannot be obtained in time for manufacture of four Vostoks until August of this year. Later Kamanin has another scene with Titov. The cosmonaut was drunk on a factory visit, and defied the militia when confronted.
Soft landed on Moon; photographed surface for 3 days. Landed on Moon 3 February 1966 at 18:44:52 GMT, Latitude 7.08 N, Longitude 295.63 E - Oceanus Procellarum. The Luna 9 spacecraft was the first spacecraft to achieve a lunar soft landing and to transmit photographic data to Earth. Seven radio sessions, totaling 8 hours and 5 minutes, were transmitted as were three series of TV pictures. When assembled, the photographs provided a panoramic view of the nearby lunar surface. The pictures included views of nearby rocks and of the horizon 1.4 Km away from the spacecraft.
Funeral services were held for the Apollo crewmen who died in the January 27 spacecraft 012 (Apollo 204 mission) flash fire at Cape Kennedy. All three were buried with full military honors: Virgil I. Grissom (Lt. Col., USAF), and Roger B. Chaffee (Lt. Cdr., USN), in Arlington, Va., National Cemetery; and Edward H. White II (Lt. Col., USAF), at West Point, N.Y. Memorial services had been held in Houston January 29 and 30.
A TWX from NASA Headquarters to MSC, MSFC, and KSC ordered checkout and launch preparation of AS-501 to proceed as planned, except that the CM would not be pressurized in an oxygen environment pending further direction. If AS-501 support, facility, or work force should conflict with the activities of the AS-204 Review Board, the Board would be given priority.
Mishin was staying in Korolev's cottage at the launch centre. The other chief designers were staying at the cosmodrome's hotel, while the technicians and workers were at the new apartments at Area 113. Afanasyev headed the 'Little Soviet', the State Commission, that would oversee the launch. The commission met in the conference hall in the huge horizontal assembly building for the N1 at Area 112. The commission gave the approval, and the first flight-ready N1 was rolled out of its assembly building over the 4 km of track to the launch pad. The huge dimensions of the booster had required a new method of building the booster at the launch site. Simulators were able to check all of he booster functions up to the point of engine ignition.
Plans for purchase of ten Soyuz spacecraft for the VVS are discussed. They next turn to Volynov's problems during the Soyuz 5 re-entry. The fault can be attributed entirely to the modular design of the spacecraft, requiring that two modules be jettisoned before re-entry. Vershinin declares that what was needed was a true KLA space flight craft, which would be winged, set toward orbit by aircraft-type booster stages, and could be recovered at a conventional air base borne on wings or rotor blades. Additional Details: here....
NASA Hq. asked Center directors for ideas for symbolic activities on the moon during the first landing to dramatize international agreements regarding exploration of the moon. Possible ideas were flying a U.N. flag with the U.S. flag on the moon; placing decal flags of the U.N. member nations on the LM descent stage; and leaving an appropriate information capsule at the landing site.
The Apollo 14 (AS-509) mission - manned by astronauts Alan B. Shepard, Jr., Stuart A. Roosa, and Edgar D. Mitchell - was launched from Pad A, Launch Complex 39, KSC, at 4:03 p.m. EST January 31 on a Saturn V launch vehicle. A 40-minute hold had been ordered 8 minutes before scheduled launch time because of unsatisfactory weather conditions, the first such delay in the Apollo program. Activities during earth orbit and translunar injection were similar to those of the previous lunar landing missions. However, during transposition and docking, CSM 110 Kitty Hawk had difficulty docking with LM-8 Antares. A hard dock was achieved on the sixth attempt at 9:00 p.m. EST, 1 hour 54 minutes later than planned. Other aspects of the translunar journey were normal and proceeded according to flight plan. A crew inspection of the probe and docking mechanism was televised during the coast toward the moon. The crew and ground personnel were unable to determine why the CSM and LM had failed to dock properly, but there was no indication that the systems would not work when used later in the flight.
Apollo 14 entered lunar orbit at 1:55 a.m. EST on February 4. At 2:41 a.m. the separated S-IVB stage and instrument unit struck the lunar surface 174 kilometers southeast of the planned impact point. The Apollo 12 seismometer, left on the moon in November 1969, registered the impact and continued to record vibrations for two hours.
After rechecking the systems in the LM, astronauts Shepard and Mitchell separated the LM from the CSM and descended to the lunar surface. The Antares landed on Fra Mauro at 4:17 a.m. EST February 5, 9 to 18 meters short of the planned landing point. The first EVA began at 9:53 a.m., after intermittent communications problems in the portable life support system had caused a 49-minute delay. The two astronauts collected a 19.5-kilogram contingency sample; deployed the TV, S-band antenna, American flag, and Solar Wind Composition experiment; photographed the LM, lunar surface, and experiments; deployed the Apollo lunar surface experiments package 152 meters west of the LM and the laser-ranging retroreflector 30 meters west of the ALSEP; and conducted an active seismic experiment, firing 13 thumper shots into the lunar surface.
A second EVA period began at 3:11 a.m. EST February 6. The two astronauts loaded the mobile equipment transporter (MET) - used for the first time - with photographic equipment, tools, and a lunar portable magnetometer. They made a geology traverse toward the rim of Cone Crater, collecting samples on the way. On their return, they adjusted the alignment of the ALSEP central station antenna in an effort to strengthen the signal received by the Manned Space Flight Network ground stations back on earth.
Just before reentering the LM, astronaut Shepard dropped a golf ball onto the lunar surface and on the third swing drove the ball 366 meters. The second EVA had lasted 4 hours 35 minutes, making a total EVA time for the mission of 9 hours 24 minutes. The Antares lifted off the moon with 43 kilograms of lunar samples at 1:48 p.m. EST February 6.
Meanwhile astronaut Roosa, orbiting the moon in the CSM, took astronomy and lunar photos, including photos of the proposed Descartes landing site for Apollo 16.
Ascent of the LM from the lunar surface, rendezvous, and docking with the CSM in orbit were performed as planned, with docking at 3:36 p.m. EST February 6. TV coverage of the rendezvous and docking maneuver was excellent. The two astronauts transferred from the LM to the CSM with samples, equipment, and film. The LM ascent stage was then jettisoned and intentionally crashed on the moon's surface at 7:46 p.m. The impact was recorded by the Apollo 12 and Apollo 14 ALSEPs.
The spacecraft was placed on its trajectory toward earth during the 34th lunar revolution. During transearth coast, four inflight technical demonstrations of equipment and processes in zero gravity were performed.
The CM and SM separated, the parachutes deployed, and other reentry events went as planned, and the Kitty Hawk splashed down in mid-Pacific at 4:05 p.m. EST February 9 about 7 kilometers from the recovery ship U.S.S. New Orleans. The Apollo 14 crew returned to Houston on February 12, where they remained in quarantine until February 26.
All primary mission objectives had been met. The mission had lasted 216 hours 40 minutes and was marked by the following achievements:
Manned precursor. Recovered April 1, 1979 10:09 GMT. Soyuz T Test.
Maneuver Summary:
197 km X 240 km orbit to 255 km X 297 km orbit. Delta V: 33 m/s
255 km X 297 km orbit to 264 km X 306 km orbit. Delta V: 4 m/s
264 km X 306 km orbit to 309 km X 321 km orbit. Delta V: 17 m/s
309 km X 321 km orbit to 279 km X 357 km orbit. Delta V: 18 m/s
279 km X 357 km orbit to 352 km X 402 km orbit. Delta V: 32 m/s
352 km X 402 km orbit to 363 km X 384 km orbit. Delta V: 8 m/s
Total Delta V: 112 m/s
Officially: Investigation of the upper atmosphere and outer space.
By January 1986 it was clear that the project, now three years behind schedule, had no prospect of completion due to problems in obtaining deliveries of equipment for Buran, numerous problems in assembling the orbiters and lack of manpower at Baikonur, and a general loss of management focus. Minister O D Bakhnov called a large group of industry leaders to the cosmodrome to review measures to concentrate and accelerate the remaining work. Three 'Tiger Teams' were set up. The first, led by Semenov, was to finish the flight Buran orbiter and associated facilities in time for a third quarter 1987 launch. The second, led by B I Gubanov, was to finish the Energia launch vehicle and fly it, without the Buran mock-ups if necessary, at the earliest possible date. The third group, led by S S Banin, was to complete the assembly and launch facilities.
On 30.01.94 at 0356 UTC (03 hrs 56 mins 14 secs) the freighter Progress-M21 docked to the aft (Kvant) docking port of the Mir-complex. Afanasyev did not have to use the TORU for the Progress-M21 approached and docked automatically with the system Kurs. During the pass in orb. 45452 (0520 UTC) checks of the airseal proved that all was in good order and Afanasyev opened the hatch to the freighter at 0524 UTC. During the next passes the crew reported their satisfaction about the state of the Progress-M21: all was clean and fresh and the people on earth had taken good care for the cargo.
Chris v.d. Berg, NL-9165/A-UK3202
Two residents of the International Space Station stepped outside their orbital home Wednesday for a 7-hour, 55-minute spacewalk to begin the connection of recently activated cooling systems from their temporary to their permanent locations and to conduct other station assembly work. Additional Details: here....
First new-generation TDRS satellite, supporting communications with the International Space Station and military satellites. Released by the Centaur upper stage into a 4336 km x 35,791 km x 25.7 deg orbit. The satellite then used its R-4D engine to reach station in geosynchronous orbit.
The Soil Moisture Active Passive satellite, carried a 6-m L-band antenna for synthetic aperture radar and radiometry measurements to map microwave emissions from water molecules in the soil. Sun synchronous orbit; 0600 GMT local time of the descending node.