First Launch: 1969-05-18. Last Launch: 2009-10-28. Number: 59 . Longitude: -80.62 deg. Latitude: 28.63 deg.
Construction began in December 1963. Complex 39B was completed on 30 November 1966. Complex 39B was used for the manned Apollo 10 launch on 18 May 1969. Following modifications in the form of a 'milk stool' to bring the Saturn IB up to the same height as the Saturn V, Complex 39B supported three manned Saturn IB flights to the Skylab space station on 25 May, 28 July and 16 November 1973. The pad also supported the Apollo/Soyuz rendezvous mission launched on 15 July 1975. Both complexes were modified to support Space Shuttle missions later on. Complex 39B supported its first Shuttle launch on 28 January 1986.
Final dress rehearsal in lunar orbit for landing on moon. LM separated and descended to 10 km from surface of moon but did not land. Apollo 10 (AS-505) - with crew members Thomas P. Stafford, Eugene A. Cernan, and John W. Young aboard - lifted off from Pad B, Launch Complex 39, KSC, at 12:49 p.m. EDT on the first lunar orbital mission with complete spacecraft. The Saturn V's S-IVB stage and the spacecraft were inserted into an earth parking orbit of 189.9 by 184.4 kilometers while the onboard systems were checked. The S-IVB engine was then ignited at 3:19 p.m. EDT to place the spacecraft in a trajectory toward the moon. One-half hour later the CSM separated from the S-IVB, transposed, and docked with the lunar module. At 4:29 p.m. the docked spacecraft were ejected, a separation maneuver was performed, and the S-IVB was placed in a solar orbit by venting residual propellants. TV coverage of docking procedures was transmitted to the Goldstone, Calif., tracking station for worldwide, commercial viewing.
On May 19 the crew elected not to make the first of a series of midcourse maneuvers. A second preplanned midcourse correction that adjusted the trajectory to coincide with a July lunar landing trajectory was executed at 3:19 p.m. The maneuver was so accurate that preplanned third and fourth midcourse corrections were canceled. During the translunar coast, five color TV transmissions totaling 72 minutes were made of the spacecraft and the earth.
At 4:49 p.m. EDT on May 21 the spacecraft was inserted into a lunar orbit of 110.4 by 315.5 kilometers. After two revolutions of tracking and ground updates, a maneuver circularized the orbit at 109.1 by 113.9 kilometers. Astronaut Cernan then entered the LM, checked all systems, and returned to the CM for the scheduled sleep period.
On May 22 activation of the lunar module systems began at 11:49 a.m. EDT. At 2:04 p.m. the spacecraft were undocked and at 4:34 p.m. the LM was inserted into a descent orbit. One hour later the LM made a low-level pass at an altitude of 15.4 kilometers over the planned site for the first lunar landing. The test included a test of the landing radar, visual observation of lunar lighting, stereo photography of the moon, and execution of a phasing maneuver using the descent engine. The lunar module returned to dock successfully with the CSM following the eight-hour separation, and the LM crew returned to the CSM.
The LM ascent stage was jettisoned, its batteries were burned to depletion, and it was placed in a solar orbit on May 23. The crew then prepared for the return trip to earth and after 61.5 hours in lunar orbit a service propulsion system TEI burn injected the CSM into a trajectory toward the earth. During the return trip the astronauts made star-lunar landmark sightings, star-earth horizon navigation sightings, and live television transmissions.
Epic repair mission which brought Skylab into working order. Included such great moments as Conrad being flung through space by the whiplash after heaving on the solar wing just as the debris constraining it gave way; deployment of a lightweight solar shield, developed in Houston in one week, which brought the temperatures down to tolerable levels. With this flight US again took manned spaceflight duration record.
Skylab 2 , consisting of a modified Apollo CSM payload and a Saturn IB launch vehicle, was inserted into Earth orbit approximately 10 minutes after liftoff. The orbit achieved was 357 by 156 km and, during a six-hour period following insertion, four maneuvers placed the CSM into a 424 by 415 km orbit for rendezvous with the Orbital Workshop. Normal rendezvous sequencing led to stationkeeping during the fifth revolution followed by a flyaround inspection of the damage to the OWS. The crew provided a verbal description of the damage in conjunction with 15 minutes of television coverage. The solar array system wing (beam) 2 was completely missing. The solar array system wing (beam) 1 was slightly deployed and was restrained by a fragment of the meteoroid shield. Large sections of the meteoroid shield were missing. Following the flyaround inspection, the CSM soft-docked with the OWS at 5:56 p.m. EDT to plan the next activities. At 6:45 p.m. EDT the CSM undocked and extravehicular activity was initiated to deploy the beam 1 solar array. The attempt failed. Frustration of the crew was compounded when eight attempts were required to achieve hard docking with the OWS. The hard dock was made at 11:50 p.m. EDT, terminating a Skylab 2 first-day crew work period of 22 hours.
Continued maintenance of the Skylab space station and extensive scientific and medical experiments. Installed twinpole solar shield on EVA; performed major inflight maintenance; doubled record for length of time in space. Completed 858 Earth orbits and 1,081 hours of solar and Earth experiments; three EVAs totalled 13 hours, 43 minutes.
The space vehicle, consisting of a modified Apollo command and service module payload on a Saturn IB launch vehicle, was inserted into a 231.3 by 154.7 km orbit. Rendezvous maneuvers were performed during the first five orbits as planned. During the rendezvous, the CSM reaction control system forward firing engine oxidizer valve leaked. The quad was isolated. Station-keeping with the Saturn Workshop began approximately 8 hours after liftoff, with docking being performed about 30 minutes later.
Final Skylab mission; included observation and photography of Comet Kohoutek among numerous experiments. Completed 1,214 Earth orbits and four EVAs totalling 22 hours, 13 minutes. Increased manned space flight time record by 50%. Rebellion by crew against NASA Ground Control overtasking led to none of the crew ever flying again. Biological experiments included two Mummichog fish (Fundulus heteroclitus).
The space vehicle consisted of a modified Apollo CSM and a Saturn IB launch vehicle. All launch phase events were normal, and the CSM was inserted into a 150.1- by 227.08-km orbit. The rendezvous sequence was performed according to the anticipated timeline. Stationkeeping was initiated about seven and one-half hours after liftoff, and hard docking was achieved about 30 minutes later following two unsuccessful docking attempts. Planned duration of the mission was 56 days, with the option of extending it to a maximum of 84 days.
This flight marked the culmination of the Apollo-Soyuz Test Project, a post-moon race 'goodwill' flight to test a common docking system for space rescue. 15 July 1975 began with the flawless launch of Soyuz 19. Apollo followed right on schedule. Despite a stowaway - a 'super Florida mosquito' - the crew accomplished a series of rendezvous manoeuvres over the next day resulting in rendezvous with Soyuz 19. At 11:10 on 17 July the two spacecraft docked. The crew members rotated between the two spacecraft and conducted various mainly ceremonial activities. Stafford spent 7 hours, 10 minutes aboard Soyuz, Brand 6:30, and Slayton 1:35. Leonov was on the American side for 5 hours, 43 minutes, while Kubasov spent 4:57 in the command and docking modules.
After being docked for nearly 44 hours, Apollo and Soyuz parted for the first time and were station-keeping at a range of 50 meters. The Apollo crew placed its craft between Soyuz and the sun so that the diameter of the service module formed a disk which blocked out the sun. This artificial solar eclipse, as viewed from Soyuz, permitted photography of the solar corona. After this experiment Apollo moved towards Soyuz for the second docking.
Three hours later Apollo and Soyuz undocked for the second and final time. The spacecraft moved to a 40 m station-keeping distance so that the ultraviolet absorption (UVA MA-059) experiment could be performed. This was an effort to more precisely determine the quantities of atomic oxygen and atomic nitrogen existing at such altitudes. Apollo, flying out of plane around Soyuz, projected monochromatic laser-like beams of light to retro-reflectors mounted on Soyuz. On the 150-meter phase of the experiment, light from a Soyuz port led to a misalignment of the spectrometer, but on the 500-meter pass excellent data were received; on the 1,000-meter pass satisfactory results were also obtained.
With all the joint flight activities completed, the ships went on their separate ways. On 20 July the Apollo crew conducted earth observation, experiments in the multipurpose furnace (MA-010), extreme ultraviolet surveying (MA-083), crystal growth (MA-085), and helium glow (MA-088). On 21 July Soyuz 19 landed safely in Kazakhstan. Apollo continued in orbit on 22-23 July to conduct 23 independent experiments - including a doppler tracking experiment (MA-089) and geodynamics experiment (MA-128) designed to verify which of two techniques would be best suited for studying plate tectonics from earth orbit.
After donning their space suits, the crew vented the command module tunnel and jettisoned the docking module. The docking module would continue on its way until it re-entered the earth's atmosphere and burned up in August 1975.
The Spartan series consists of low-cost, Shuttle-launched, short-duration, sounding-rocket-type payloads. The payloads were retrievable and reusable with a turnaround time of 6 to 9 months. Spartan operated as an autonomous sub-satellite, and the data was stored on an internal tape recorder. Pointing and stabilization were achieved by an attitude control system capable of three-axis stabilized pointing to any target within +/- 3 arc-minutes. The main objective of this spacecraft was to obtain UV spectra of the coma and tail of Comet Halley in January 1986 shortly before its perihelion. This spacecraft was lost when Space Shuttle Challenger exploded on launch.
Manned five crew. First shuttle reflight after Challenger disaster. Deployed TDRS 3. Payloads: Deploy IUS (lnertial Upper Stage) with Tracking and Data Relay Satellite (TDRS)-C. 3M's Physical Vapor Transport Organics Solids 2 experiment (PVTOS), Automated Directional Solidification Furnace (ADSF), Infrared Communi-cations Flight Experiment (lRCFE), Protein Crystal Growth Il (PCG), Isoelectric Focusing (ISF)-2, Phase Partitioning Experiment (PPE), Aggrega-tion of Red Blood Cells (ARC)-2, Mesoscale Lightning Experiment (MLE)-1, Earth Limb Radiance (ELRAD), Orbiter Experiments (OEX), Autonomous Supporting Instrumentation System (OASlS)-I, two Shuttle Student Involvement Project (SSIP) experiments.
NASA communications; 171 deg W; deployed from STS-26 . Spacecraft engaged in practical applications and uses of space technology such as weather or communication (US Cat C). Positioned in geosynchronous orbit at 151 deg W in 1988; 171 deg W in 1989-1990; 174 deg W in 1990-1991; 62 deg W in 1991-1994;171 deg W in 1994-1995; 85 deg E in 1995-1999 As of 26 August 2001 located at 85.17 deg E drifting at 0.007 deg E per day. As of 2007 Mar 10 located at 84.98E drifting at 0.004W degrees per day.
Manned five crew. Deployed a classified payload. Orbits of Earth: 68. Landed at: Runway 17 dry lake bed at Edwards Air Force Base, . Landing Speed: 359 kph. Touchdown miss distance: 447.00 m. Landing Rollout: 2,171.00 m. Payloads: DoD Mission.
Manned five crew. Deployed TDRS 4. Payloads: Deploy IUS (Inertial Upper Stage) with Tracking and Data Relay Satellite (TDRS)-D. Protein Crystal Growth (PCG); Chromosome and Plant Cell Division in Space; IMAX 70mm camera; Shuttle Student Involvement Project (SSIP) experiments: SSIP 82-8, Effects of Weightlessness in Space Flight on the Healing of Bone Fractures, and SSIP 83-9, Chicken Embryo Development in Space; Air Force Maui Optical Site (AMOS) experiment.
Deployed from STS 29 13 March 1989; NASA communications; 41 deg W. Spacecraft engaged in practical applications and uses of space technology such as weather or communication (US Cat C). Positioned in geosynchronous orbit at 41 deg W in 1989-1999 As of 5 September 2001 located at 41.04 deg W drifting at 0.010 deg W per day. As of 2007 Mar 10 located at 45.81W drifting at 0.008W degrees per day.
SAR radar imaging of the Venusian surface, gravitational field mapping. The Magellan spacecraft was deployed from shuttle STS-30 on May 5, 1989, arrived at Venus on August 10, 1990 and was inserted into a near-polar elliptical orbit with a periapsis altitude of 294 km at 9.5 deg. N. The primary objectives of the Magellan mission were to map the surface of Venus with a synthetic aperture radar (SAR) and to determine the topographic relief of the planet. At the completion of radar mapping 98% of the surface was imaged at resolutions better than 100 m, and many areas were imaged multiple times. The mission was divided up into 'cycles', each cycle lasted 243 days (the time necessary for Venus to rotate once under the Magellan orbit - i.e. the time necessary for Magellan to 'see' the entire surface once.) The mission proceeded as follows: 10 Aug 1990 - Venus orbit insertion and spacecraft checkout;15 Sep 1990 - Cycle 1: Radar mapping (left-looking); 15 May 1991 - Cycle 2: Radar mapping (right-looking); 15 Jan 1992 - Cycle 3: Radar mapping (left-looking); 14 Sep 1992 - Cycle 4: Gravity data acquisition; 24 May 1993 - Aerobraking to circular orbit; 3 Aug 1993 - Cycle 5: Gravity data acquisition; 30 Aug 1994 - Windmill experiment; 12 Oct 1994 - Loss of radio signal; 13 Oct 1994 - Loss of spacecraft. A total of 4225 usable SAR imaging orbits was obtained by Magellan. Magellan showed an Earth-sized planet with no evidence of Earth-like plate tectonics. At least 85% of the surface is covered with volcanic flows, the remainder by highly deformed mountain belts. Even with the high surface temperature (475 C) and high atmospheric pressure (92 bars), the complete lack of water makes erosion a negligibly slow process, and surface features can persist for hundreds of millions of years. Some surface modification in the form of wind streaks was observed. Over 80% of Venus lies within 1 km of the mean radius of 6051.84 km. The mean surface age is estimated to be about 500 million years. A major unanswered question concerns whether the entire surface was covered in a series of large events 500 million years ago, or if it has been covered slowly over time. The gravity field of Venus is highly correlated with the surface topography, which indicates the mechanism of topographic support is unlike the Earth, and may be controlled by processes deep in the interior. Details of the global tectonics on Venus were still unresolved.
Manned five crew. Deployed 2 classified satellites. Landed at: Runway 17 dry lake bed at Edwards Air Force Base, . Landing Speed: 287 kph. Touchdown miss distance: 1,618.00 m. Landing Rollout: 1,833.00 m. Payloads: DoD Mission.
Manned five crew. Deployed Galileo .Payloads: Deploy IUS with Galileo spacecraft. Shuttle Solar Backscatter Ultraviolet (SSBUV), Polymer Morphology (PM) experiments, IMAX camera project, Mesoscale Lightning Experiment (MLE), Air Force Maui Optical Site (AMOS) experiment, Growth Hormone Concentration and Distribution (GHCD) in Plants experiment, Sensor Technology Experiment (STEX), SSIP Student Experiment (SE) 82-15, Ice Crystals Experiment. First flight at this inclination.
Deployed from STS-34 18 October 1989; entered Jupiter orbit 7 December 1995 and conducted investigations of Jupiter's moons, atmosphere, and magnetosphere. Although the antenna failed to deploy, NASA developed workarounds and the spacecraft cruised the Jovian system for eight years. Its propellant then depleted, it was maneuvered to enter the Jovian atmosphere on September 21, 2003, at 18:57 GMT. Entry was at 48.2 km/s from an orbit with a periapsis 9700 km below the 1-bar atmospheric layer. The spacecraft continued transmitting at least until it passed behind the limb of Jupiter at 1850:54 GMT, at which point it was 9283 km above the 1-bar level, surprising Galileo veterans who feared it might enter safemode due to the high radiation environment. On its farewell dive, it had crossed the orbit of Callisto at around 1100 on September 20, the orbit of Ganymede at around 0500 on September 21, Europa's orbit at about 1145, Io's orbit at about 1500, Amalthea's orbit at 1756, and the orbits of Adrastea and Metis at 1825. Galileo was destroyed to prevent the possibility that its orbit would eventually be perturbed in such a way that it would crash on and biologically contaminate Europa, which was considered a possible place to search for life. Light travel time from Jupiter to Earth was 52 min 20 sec at the time of impact, and the final signal reached Earth at 1943:14 GMT.
Manned five crew. Deployed a classified payload. Orbits of Earth: 78. Distance traveled: 3,218,687 km. Landed at: Concrete runway 04 at Edwards Air Force Base, Cali. Landing Speed: 368 kph. Touchdown miss distance: 570.00 m. Landing Rollout: 2,366.00 m. Payloads: DoD Mission - third space shuttle night launch.
Deployed HST (Hubble Space Telescope). Payloads: Deployment of Hubble Space Telescope, IMAX camera in payload bay and in crew compartment, Protein Crystal Growth III-03, Investigation Into Polymer Membrane Process-ing- 01, Air Force Maui Optical Site-05, Radiation Monitoring Equipment III-01, Student Experiment 82-16, and Ascent Particle Monitor 01.
Manned five crew. Deployed Ulysses spacecraft. Payloads: Deploy Ulysses, Shuttle Solar Backscatter Ultraviolet, Intelsat Solar Array Coupon, Solid-Surface Combustion Experiment, Investigations Into Polymer Membrane Processing, Chromo-some and Plant Cell Division in Space, Physiological Systems Experiment, Voice Command System, Radiation Monitoring Equipment III, Air Force Maui Optical Site.
Deployed from STS 41 10/6/90; solar research. Ulysses is a scientific spacecraft, within the framework of the international solar/polar mission. It will be the first spacecraft to fly over the poles of the sun. Frequency 2111.6073/2293.1481 MHz, 8408.2099 MHz., interplanetary trajectory i nto a polar flyby over the sun. Designator ESA/90/01. Also registered by the United States in ST/SG/SER.E/250, orbital data are taken from that document.
Manned five crew. Unscheduled EVA to manually deploy the Gamma-Ray Observatory's high-gain antenna, which failed to deploy upon ground command. Payloads: Gamma-Ray Observatory (GRO), Crew/ Equipment Translation Aids (part of Extravehicular Activity Development Flight Experiment), Ascent Particle Monitor (APM), Bioserve Instrumentation Technology Associates Materials Dispersion Apparatus (BlMDA), Protein Crystal Growth (PCG)-Block Il, Space Station Heatpipe Advanced Radiator Element (SHARE)-ll, Shuttle Amateur Radio Experiment (SAREX)-ll, Radiation Monitoring Equipment (RME)-lIl, Air Force Maui Optical Site (AMOS) Calibration Test.
Astrophysical laboratory for gamma ray observations; deployed from STS-37 4/7/91; renamed Compton Gamma Ray Observatory. The Compton Gamma Ray Observatory was intentionally deorbited on by NASA over the objections of the scientific community on June 3, 2000. NASA decided to end the mission after several orientation gyroscope failures. They felt that if another gyroscope was lost, the heavy spacecraft might eventually reenter out of control.
Carried Spacelab life sciences module. Payloads: Spacelab Life Sciences (SLS)-1 with long module, getaway special bridge assembly with 12 getaway specials, Physiological Monitoring System (PMS), Urine Monitoring System (UMS), Animal Enclosure Modules (AEM), Middeck Zero-gravity Dynamics Experiment (MODE), 7 Orbiter Experiments Program experiments.
Retrieved Intelsat 6 and attached new SRM. First active dual rendezvous of two orbiting spacecraft (Endeavour and Intelsat-Vl). First deployment of a drag chute on the orbiter fleet. Payloads: Intelsat-Vl reboost mission hardware, Assembly of Station by EVA Methods (ASEM), Commercial Protein Crystal Growth (CPCG), Air Force Maui Optical Site (AMOS) Calibration Test, Ultraviolet Plume Instrument (UVPl).
Manned seven crew. Deployed Eureca-1; failed to deploy Italian tether probe TSS-1. Payloads: Tethered Satellite System (TSS)-1; European Retrievable Carrier (EURECA)-1L; Evaluation of Oxygen Integration with Materials (EOlM)-lll/ Thermal Energy Management Processes (TEMP)-2A; Consortium for Materials Development In Space Complex Autonomous Payloads (CONCAP)-ll and Ill; IMAX Cargo Bay Camera (ICBC); Limited Duration Space Environment Candidate Materials Exposure (LDCE); Pituitary Growth Hormone Cell Function (PHCF); Ultravio-let Plume Instrument (UVPl).
Microgravity experiments; deployed from STS-46 8/2/92; retrieved by STS-57; European Retrievable Carrier. EURECA is a European scientific and technology mission, launched by the US Space Transportation System. The spacecraft is scheduled to be retrieved likewise by the US/STS in late spring/early summer 1993. Designator ESA/92/01. Frequency plan: 2053.4583/22 30 MHz, 28 GHz/ 18 GHz (data-relay via Olympus).
Manned seven crew. Carried Spacelab-J with microgravity and biology experiments. Payloads: Spacelab-J, nine getaway special canister experiments, Israel Space Agency Investigation About Hornets (ISAIAH), Shuttle Amateur Radio Experiment (SAREX) II, Solid Surface Combus-tion Experiment (SSCE).
Deployed Lageos 2, CTA. Payloads: Laser Geodynamic Satellite (LAGEOS) II/ Italian Research Interim Stage (IRIS), Canadian Experiments (CANEX) 2, United States Micro-gravity Payload (USMP) 1, Attitude Sensor Pack-age (ASP), Tank Pressure Control Experiment (TPCE), Physiological Systems Experiment (PSE), Heat Pipe Performance (HPP) experiment, Commercial Protein Crystal Growth (CPCG), Shuttle Plume Impingement Experiment (SPIE), Commercial Materials ITA Experiment (CMIX), Crystals by Vapor Transport Experiment (CVTE).
Manned five crew. Deployed TDRSS 6. Payloads: Tracking and Data Relay Satellite (TDRS)-F/Inertial Upper Stage (IUS); Diffuse X-ray Spectrometer (DXS); Chromosome and Plant Cell Division in Space (CHROMEX); Commercial Generic Bioprocessing Apparatus (CGBA) A; Physiological and Anatomical Rodent Experiment (PARE) 02; Solid Surface Combustion Experiment (SSCE).
NASA communications; deployed from STS-54 1/13/93. Spacecraft engaged in research and exploration of the upper atmosphere or outer space (US Cat B). Positioned in geosynchronous orbit at 150 deg W in 1993; 138 deg W in 1993; 46 deg W in 1994-1999 As of 5 September 2001 located at 46.99 deg W drifting at 0.017 deg W per day. As of 2007 Mar 8 located at 173.51W drifting at 0.006E degrees per day.
Manned five crew. Carried Atlas-2; deployed and retrieved Spartan 201. Payloads: Atmospheric Laboratory for Applications and Science (ATLAS) 2, Shuttle Solar Backscat-ter Ultraviolet (SSBUV) A, Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN) 201 (Solar Wind Generation Experi-ment), Solar Ultraviolet Experiment (SUVE), Commercial Material Dispersion Apparatus (CMIX), Physiological and Anatomical Rodent Experiment (PARE), Hand-held, Earth-oriented, Real-time, Cooperative, User-friendly, Location-targeting, and Environmental System (HER-CULES), Shuttle Amateur Radio Experiment (SAREX) II, Space Tissue Loss (STL), Air Force Maui Optical Site (AMOS), Cosmic Radiation Effects and Activation Monitor (CREAM), Radiation Monitoring Equipment (RME) III.
Spartan Flight Support Structure was an MPESS class cross-bay truss structure on which Spartan 204 was mounted. The Spartan satellites were small free flyers deployed by the RMS robot arm for a couple of days and then retrieved. SPTN-204 carried NRL's FUVIS Far Ultraviolet Imaging Spectrograph which was used to study the Shuttle environment and make astronomical observations. This was the first Spartan mission to be sponsored by the USAF Space Test Program rather than NASA.
Manned six crew. Carried Spacehab 1; retrieved Eureca-1 spacecraft. Payloads: Spacehab 01, retrieval of European Retriev-able Carrier (EURECA) Satellite, Superfluid Helium On-Orbit Transfer (SHOOT), Consortium for Materials Development in Space Complex Autonomous Payload (CONCAP)-IV, Fluid Acquisition and Resupply Experiment (FARE), Shuttle Amateur Radio Experiment (SAREX) II, Air Force Maui Optical Site (AMOS), GAS bridge assembly with 12 getaway special payloads.
The countdown for Discovery's third launch attempt ended at the T-3 second mark when on-board computers detected the failure of one of four sensors in main engine #2 which monitor the flow of hydrogen fuel to the engine. All of Discovery's main engines were ordered replaced on the launch pad, delaying the Shuttle's fourth launch attempt until September 12, 1993.
Deployed and retrieved Orfeus-SPAS. During the EVA conducted tests in support of the Hubble Space Telescope first servicing mission and future EVAs, including Space Station assembly and maintenance. First night landing at KSC. Payloads: Advanced Communication Technology Sat-ellite (ACTS)/Transfer Orbit Stage (TOS), Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer—Shuttle Pallet Satellite (ORFEUS-SPAS) with Remote IMAX Camera System (RICS), Limited Duration Space Environ-ment Candidate Materials Exposure (LDCE) (Beam Configuration C), Commercial Protein Crystal Growth (CPCG Block II), Chromosome and Plant Cell Division in Space (CHROMEX), High Resolution Shuttle Glow Spectroscopy-A (HRSGS-A), Auroral Photography Experiment-B (APE-B), Investigation into Polymer Membrane Processing (IPMP), Radiation Monitoring Equip-ment (RME-III), Air Force Maui Optical Site Cal-ibration Test (AMOS), IMAX In-Cabin Camera.
NASA experimental communications; Advanced Communications Technology Satellite; deployed from STS-51 9/12/93; 100 deg W. Positioned in geosynchronous orbit at 100 deg W in 1993-1999 105 deg W in 2000. As of 5 September 2001 located at 105.36 deg W drifting at 0.007 deg W per day. As of 2007 Mar 10 located at 105.14W drifting at 0.004W degrees per day.
Manned seven crew. Hubble repair mission. Conducted the most EVAs (5) on a Space Shuttle Flight to that date. Payloads: Hubble Space Telescope (HST) Servicing Mission (SM) 1, IMAX Camera, IMAX Cargo Bay Camera (ICBC), Air Force Maui Optical Site (AMOS).
Carried USMP-2, OAST-2, SAMPIE, TES, EISG. Payloads: United States Microgravity Payload (USMP) 2, Office of Aeronautics and Space Technology (OAST) 2, Dexterous End Effector (DEE), Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A), Limited-Duration Space Environment Candidate Material Exposure (LDCE), Advanced Protein Crystal Growth (APCG), Physiological Systems Experiment (PSE), Commercial Protein Crystal Growth (CPCG), Commercial Generic Bioprocessing Apparatus (CGBA), Auroral Photography Experiment Phase B (APE-B), Middeck Zero-Gravity Dynamics Experiment (MODE), Air Force Maui Optical Site (AMOS) Calibration Test, Bioreactor Demonstration System A.
Payloads: Lidar In-Space Technology Experiment (LITE), Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN) 201-II, Robot-Operated Materials Processing System (ROMPS), Shuttle Plume Impingement Flight Experiment (SPIFEX), getaway special (GAS) bridge assembly with ten GAS experiments, Trajectory Control Sensor (TCS), Simplified Aid for EVA Rescue (SAFER), Solid Surface Combustion Experiment (SSCE), Biological Research in Canisters (BRIC) III, Radiation Monitoring Experiment (RME) III, Military Applications of Ship Tracks (MAST), Shuttle Amateur Radio Experiment (SAREX) II, Air Force Maui Optical Site (AMOS) Calibration Test.
Carried Atlas-3 laboratory; deployed and retrieved CRISTA-SPAS. Payloads: Atmospheric Laboratory for Applications and Science (ATLAS) 3, Cryogenic Infrared Spectrometers and Telescopes for the Atmo-sphere (CRISTA)-Shuttle Pallet Satellite (SPAS) 1, Experiment of the Sun for Complement-ing the ATLAS Payload for Education (ESCAPE) II, Inter-Mars Tissue Equivalent Proportional Counter (ITEPC), Shuttle Solar Backscatter Ultraviolet (SSBUV) A, Physiological and Anatomical Rodent Experiment (PARE/NIH-R), Protein Crystal Growth (PCG-TES and PCG-STES), Space Tissue Loss (STL/NIH-C-A), Shuttle Acceleration Measurement System (SAMS), Heat Pipe Performance (HPP).
Deployed ODERACS 2A-2E; deployed and retrieved Spartan 204. Discovery rendezvoused with Russia's space station, Mir, to a distance of 11 m and performed a fly-around, but did not dock with Mir. Payloads: SPACEHAB 03, Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN) 204, Cryo Systems Experiment (CSE)/GLO-2 Experi-ment Payload (CGP)/Orbital Debris Radar Calibration Spheres (ODERACS) 2, Solid Surface Combustion Experiment (SSCE), Air Force Maui Optical Site (AMOS), IMAX Cargo Bay Camera (ICBC)
Deployed TDRS 7. Payloads: Tracking and Data Relay Satellite (TDRS) G/ Inertial Upper Stage (IUS); Bioreactor Demon-stration System (BDS) B; Biological Research in Canisters (BRIC); Commercial Protein Crystal Growth (CPCG); Hand-Held, Earth-Oriented, Real-Time, Cooperative, User-Friendly, Location-Targeting and Environmental System (HER-CULES); Microcapsules in Space (MIS) B; Physiological and Anatomical Rodent Experiment (PARE)/National Institutes of Health (NIH) Rodents (R); Radiation Monitoring Experiment (RME) III; Shuttle Amateur Radio Experiment (SAREX) II; Space Tissue Loss (STL)/National Institutes of Health (NIH) Cells (C); Military Applications of Ship Tracks (MAST); Visual Function Tester (VFT) 4; Window Experiment (WINDEX).
NASA communications; deployed from STS-70 on 7/13/95. Stationed at 149.8 deg W. Positioned in geosynchronous orbit at 150 deg W in 1995-1996; 171 deg W in 1996-1999 As of 3 September 2001 located at 171.48 deg W drifting at 0.017 deg W per day. As of 2007 Mar 11 located at 150.85W drifting at 0.002E degrees per day.
Carried TSS-1R tether satellite; satellite tether broke during deployment, making TSS-1R an unintentional free flyer
Payloads: Tethered Satellite System (TSS) Reflight (1R); Orbital Acceleration Research Experiment (OARE) (part of United States Microgravity Payload 3); USMP-3; Commercial Protein Crystal Growth (CPCG) 09, Block IV; Middeck Glovebox Experiment (MGBX) (part of USMP-3). During the deployment of TSS, the tether broke and the satellite was lost.
Shuttle-Mir Mission 3. Docked with the Mir space station 24 March 1996; Shannon Lucid was left on Mir for an extended stay. First American EVA on Mir. Payloads: SPACEHAB/Mir 03; KidSat; Shuttle Amateur Radio Experiment (SAREX) II, Configuration M; RME 1304—Mir/ Environmental Effects Payload (MEEP); orbiter docking system RME 1315; Trapped Ions in Space Experiment (TRIS); Extravehicular Activity Development Flight Test (EDFT) 04.
Deployed and retrieved Spartan 2; deployed PAMS-STU; carried Spacehab module. Payloads: Shuttle Pointed Research Tool for Astronomy (SPARTAN) 207/Inflatable Antenna Experiment (IAE); Technology Experiments Advancing Missions in Space (TEAMS) 01 (includes Vented Tank Resupply Experiment (VTRE), Global Positioning System (GPS) Attitude and Navigation Experiment (GANE) (RME 1316), Liquid Metal Test Experiment (LMTE) and Passive Aerodynami-cally Stabilized Magnetically Damped Satellite (PAMS) Satellite Test Unit (STU); SPACEHAB-4; Brilliant Eyes Ten-Kelvin Sorption Cryocooler Experiment (BETSCE); 12 getaway specials attached to a GAS bridge assembly (GAS 056, 063, 142, 144, 163, 200, 490, 564, 565, 703, 741 and the Reduced-Fill Tank Pressure Control Experiment (RFTPCE); Aquatic Research Facility (ARF) 01; Biological Research in Canisters (BRIC) 07, Block III.
Columbia carried Terence T Henricks, Kevin R Kregel, Susan J Helms, Richard M Linnehan, Charles E Brady, Jr, Jean-Jacques Favier, and Robert Brent Thirsk to orbit. Main payload was the Life and Microgravity Spacelab for conducting human biological and microgravity experiments. Columbia landed safely at Kennedy Space Center on July 7.
Mission STS-80 carried the Orfeus astronomy satellite, the Wake Shield Facility, and spacewalk equipment. The Orfeus satellite was deployed on November 20. It carried an ultraviolet telescope and spectrographs. Wake Shield Facility was deployed on November 22 and retrieved on November 26 . On 1996 Nov 29, crewmembers Tamara Jernigan and Thomas Jones were to conduct the first of several planned EVAs. However the shuttle's exit hatch would not open and NASA cancelled this and the other planned spacewalks of the mission. On December 4 at the astronauts retrieved the Orfeus satellite using the RMS arm. Reentry attempts on Dec 5 and Dec 6 were called off due to bad weather. Columbia finally landed at 11:49 GMT December 7 on Runway 33 at Kennedy Space Center, making STS-80 the longest shuttle mission to that date .
After a night launch of Space Shuttle Atlantis, the Shuttle docked with Mir at 03:55 GMT on January 14. STS-81 transferred 2,715 kg of equipment to and from the Mir, the largest transfer of items to that date. During the docked phase, 640 kg of water, 515 kg of U.S. science equipment, 1,000 kg of Russian logistics, and 120 kg of miscellaneous material were transferred to Mir. Returned to Earth aboard Atlantis were 570 kg of U.S. science material, 405 kg of Russian logistics and 98 kg of miscellaneous material. At 02:16 GMT January 19, Atlantis separated from Mir after picking up John Blaha, who had arrived aboard STS-79 on September 19, 1996, and dropping off Jerry Linenger, who was to stay aboard Mir for over four months. The Shuttle backed off along the -RBAR (i.e. toward the Earth) to a distance of 140 m before beginning a flyaround at 02:31 GMT. Most of the flyaround was at a distance from Mir of 170 m. The first 'orbit' around Mir was complete at 03:15, and the second was completed at 04:02 GMT. Then the Orbiter fired its jets to drift away from the orbit of Mir. NASA's first Shuttle mission of 1997 came to a close with a landing at the Kennedy Space Center at 14:22 GMT on January 22 (after the first opportunity was waved off due to cloud cover at the Cape).
OV-102 Columbia was launched on a microgravity science mission. Spartan 201 was released a day late on November 21. However the satellite did not start its automatic orientation maneuver because the crew failed to send it the correct commands prior to release.
Spartan was recaptured by hand, during a spacewalk by Takao Doi and Winston Scott on November 25. Tests of space station tools went well, but the free-flying Sprint camera subsatellite was not deployed due to lack of time.
NASA decided not to redeploy Spartan on this mission. During an EVA on Dec 3, Doi and Scott carried out more tests of the Space Station crane. They also deployed the AERCam/Sprint 'football' remote-controlled camera for a free flight in the payload bay.
Columbia landed on December 5, with a deorbit burn at 11:21 GMT. Touchdown was at 12:20 GMT at Kennedy Space Center.
Columbia rolled out to pad 39B on March 23. Payloads:
The Neurolab mission was managed by NASA-Johnson at Houston, unlike earlier Spacelab flights which were NASA-Marshall/Huntsville's responsibility. Landed at Kennedy Space Center May 3 1998.
The flight of STS-95 provoked more publicity for NASA than any other flight in years, due to the presence of ex-astronaut Senator John Glenn on the crew, which also included the first Spanish astronaut, Pedro Duque. The US Navy PANSAT student satellite was deployed on Oct 30 into a 550 km x 561 x 28.5 degree orbit. The Spartan 201 satellite was deployed from Discovery on November 1 and retrieved on November 3. Spartan 201 was on its fifth mission to observe the solar corona. The data on this mission would be used to recalibrate the SOHO satellite which recently resumed observation of the Sun following loss of control. Discovery landed at 17:03:31 GMT November 7 on Runway 33 at the Shuttle Landing Facility at Kennedy Space Center.
Discovery docked at the PMA-2 end of the International Space Station PMA-2/Unity/PMA-1/Zarya stack. The crew transferred equipment from the Spacehab Logistics Double Module in the payload bay to the interior of the station. Tammy Jernigan and Dan Barry made a space walk to transfer equipment from the payload bay to the exterior of the station. The ODS/EAL docking/airlock truss carried two TSA (Tool Stowage Assembly) packets with space walk tools. The Integrated Cargo Carrier (ICC), built by Energia and DASA-Bremen, carried parts of the Strela crane and the US OTD crane as well as the SHOSS box which contains three bags of tools and equipment to be stored on ISS's exterior.
The STS-96 payload bay manifest:
On May 30 at 02:56 GMT Tammy Jernigan and Dan Barry entered the payload bay of Discovery from the tunnel adapter hatch, and made a 7 hr 55 min space walk, transferring equipment to the exterior of the station.
On May 31 at 01:15 GMT the hatch to Unity was opened and the crew began several days of cargo transfers to the station. Battery units and communications equipment were replaced and sound insulation was added to Zarya. Discovery undocked from ISS at 22:39 GMT on June 3 into a 385 x 399 km x 51.6 degree orbit, leaving the station without a crew aboard. On June 5 the Starshine satellite was ejected from the payload bay. The payload bay doors were closed at around 02:15 GMT on June 6 and the deorbit burn was at 04:54 GMT. Discovery landed on runway 15 at Kennedy Space Center at 06:02 GMT.
At 0:721 GMT on June 5 the Starshine satellite was ejected into a 379 x 396 km x 51.6 degree orbit from a canister at the rear of STS-96 Space Shuttle Discovery's payload bay. The small Starshine satellite, built by NRL, was to be observed by students as part of an educational exercise.
STS-93 was first rolled out to pad 39B on June 7 1999. The Chandra/IUS-27 vehicle was placed in the payload canister on June 19. The first launch attempt was on July 20, but controllers aborted the launch at T-6 seconds, just before main engine ignition, due to a data spike in hydrogen pressure data. This was determined to be due to a faulty sensor and a second attempt was on July 22. A lightning storm prevented launch during the 46 minute window, and the launch was again scrubbed. Finally the vehicle lifted off the pad on July 23, but five seconds after launch a short in an electrical bus brought down two of the three main engine controllers. Backup controllers took over, but a further failure on the backup controller bus would have resulted in engine shutdown and the first ever attempt at an RTLS (Return To Launch Site) abort. To further complicate matters engine 3 (SSME 2019) had a hydrogen leak throughout the ascent, causing the engine to run hot. Controllers sweated as temperatures neared redline. The hot engine's controller compensated as programmed by using additional liquid oxygen propellant. The final result was that the shuttle ran out of gas - main engine cut-off (MECO) was at 04:39 GMT, putting Columbia into a 78 km x 276 km x 28.5 degree transfer orbit. Columbia was 1,700 kg short of oxygen propellant and 5 meters/sec slower than planned. The OMS-2 engine burn at 05:12 GMT circularised the orbit 10 km lower than planned.
The orbiter payload bay contained only the Chandra spacecraft, the IUS, and the IUS tilt tableTthe following payloads were carried in the shuttle's cabin: STL-B (Space Tissue Loss), CCM (Cell culture module), SAREX-II (Shuttle Amateur Radio Experiment), EarthKam, PGIM (Plant Growth Investigations in Microgravity), CGBA (Commercial Generic Bioprocessing Apparatus), MEMS (Micro-electric Mechanical System), and BRIC (Biological Research in Canisters) and SWUIS (the Southwest Ultraviolet Imaging System, an 0.18-m UV telescope to be used for airglow and planetary observations); GOSAMR (the Gelation of Sols: Applied Microgravity Research experiment) and LFSAH, the Lightweight Flexible Solar Array Hinge. MSX and SIMPLEX experiments were also to be carried out.
Chandra/IUS-27 was deployed from Columbia at 11:47 GMT July 23. Flight duration was limited; this was the heaviest shuttle (122,534 kg) and heaviest payload (19,736 kg) to that date. Columbia landed at 03:20 GMT on July 28 on runway 33 at Kennedy Space Center. Post-flight inspection found the presence of holes in the cooling lines on the nozzle of SSME 2019 (engine 3) which caused a hydrogen leak. A loose repair pin in the engine broke free and caused the failure. The cause of the short was found to be chaffed wiring inside the shuttle. The entire fleet was grounded for inspection and replacement of wiring as necessary.
The Chandra Advanced X-ray Astrophysics Facility was one of NASA's four Great Observatories (along with Hubble Space Telescope, Compton Gamma Ray Observatory, and the SIRTF). Chandra will study the composition and nature of galaxies, stellar objects and interstellar phenomena as well as basic issues in theoretical physics using the most sensitive X-ray telescope ever built. The IUS under-performed and placed Chandra in an orbit about 900 km lower than planned. Therefore Chandra's own IPS propulsion system had to be used to make up the difference. The first such manoeuvre was at 01:11 GMT on July 25 when the IPS engines fired for 5 minutes to raise perigee to 1192 km. Further perigee burns on July 31, August 4, and August 7 raised the orbit to its final 10,000 km x 140.000 km. Additional Details: here....
Hubble Space Telescope (HST) servicing mission SM-3A, delayed repeatedly by technical problems with the shuttle fleet after the near-disastrous previous launch. Finally launched after the last possible day to avoid Y2K computer problems; one spacewalk was cancelled so that the shuttle could return by December 28. Hubble was in a 591 km x 610 km x 28.5 deg orbit at launch. After separation of the external tank ET-101 the Orbiter was in a 56 km x 587 km x 28.5 deg transfer orbit. The OMS 2 burn at 0134 UTC raised the orbit to 313 km x 582 km. The payload bay contained:
Atlantis was launched from Kennedy Space Center's Launch Complex 39B. Solid rocket boosters RSRM-75 and external tank ET-103 were used to loft the orbiter into space. The inital orbit of 72 x 328 km x 51.6 deg was circularised by the Shuttle's OMS engines at apogee.
Atlantis docked with the PMA-2 adapter on the International Space Station at 05:51 GMT on September 10. The orbiter's small RCS engines were used to gently reboost the station's orbit several times.
Astronauts Lu and Malenchenko made a spacewalk on September 11 beginning at 04:47 GMT. They rode the RMS arm up to Zvezda and began installing cables, reaching a distance of 30 meters from the airlock when installing Zvezda's magnetometer. Total EVA duration was 6 hours 21 minutes.
During their 12-day flight, the astronauts spent a week docked to the International Space Station during which they worked as movers, cleaners, plumbers, electricians and cable installers. In all, they spent 7 days, 21 hours and 54 minutes docked to the International Space Station, outfitting the new Zvezda module for the arrival of the Expedition One crew later this fall.
The Shuttle undocked from ISS at 03:44 GMT on September 18 and made two circuits of the station each lasting half an orbit, before separating finally at 05:34 GMT. The payload bay doors were closed at 04:14 GMT on September 20 and at 06:50 GMT the OMS engines ignited for a three minute burn lowering the orbit from 374 x 386 km x 51.6 deg to 22 x 380 km x 51.6 deg. After entry interface at 07:25 GMT, the orbiter glided to a landing on runway 15 at Kennedy Space Center with main gear touchdown at 07:56:48 GMT for a mission duration of 283 hr 11min.
Endeavour was launched on an assembly mission to the to the International Space Station (ISS). The main mission was to install a 72 m x 11.4 m, 65 kW double-wing solar panel on the Unity module of the ISS. The external tank and the Orbiter entered a 74 x 325 km orbit at 0314 GMT. Endeavour's OMS burn raised its perigee to 205 km at around 0347 GMT; the ET re-entered over the Pacific. Endeavour docked with the Station's PMA-3 docking port at 1959 GMT on December 2. Astronauts then installed the P6 solar panel truss to the station during a series of spacewalks. The P6 was made up of the LS (Long Spacer), PV-1 IEA (Integrated Equipment Assembly) and the PVAA (Photovoltaic Array). The LS carried two Thermal Control Systems with radiators to eject waste heat from the Station; these radiators were to be moved to truss segments S4 and S6 later in assembly. The PVAA had solar array wings SAW-2B and SAW-4B, which deployed to a span of 73 meters. Only after completion of three station assembly space walks on December 3, 5, and 7 did the Endeavour crew enter the station (at 1436 GMT on December 8), delivering supplies to Alpha's Expedition One crew. Hatches were closed again at 1551 GMT December 9, and Endeavour undocked at 1913 GMT the same day. After one flyaround of the station, Endeavour fired its engines to depart the vicinity at 2017 GMT December 9. The deorbit burn was at 2158 GMT on December 11, changing the orbit from 351 x 365 km to 27 x 365 km, with landing at Runway 15 of Kennedy Space Center at 2303 GMT.
The payload bay of Endeavour for STS-97 contained a total cargo of 18740 kg:
STS 102 was an American shuttle spacecraft that carried a crew of seven astronauts (six American and one Russian). The primary mission was to deliver a multi-rack Italian container (Leonardo MultiPurpose Logistics Module, LMPLM) to the Destiny Module of the International Space Station, ISS. It docked with the ISS at 05:34 UT on 9 March. The 6.4 m x 4.6 m cylindrical LMPLM delivered new equipment to Destiny, and retrieved used/unwanted equipment, and trash back to the shuttle. The crew did a few spacewalks to install a platform on the ISS to support a Canadian robot arm when it arrives next month. The STS 102 left behind three of the astronauts (two American and one Russian) and brought back the three astronauts (one American and two Russian) who had been inhabiting the ISS for about four and a half months. It landed at Cape Canaveral at 07:31 UT on 21 March.
Discovery was launched on mission STS-102 (Space Station flight 5A.1) into an initial 60 x 222 km x 51.6 deg orbit. The mission was delivery of supplies and equipment, and changeout of the Expedition One and Expedition Two station crews. STS-102 carried the Leonardo Multi Purpose Logistics Module (MPLM), built by Alenia Spazio (Torino), to the International Space Station. The 6.4 m x 4.6 m cylindrical MPLM was a descendant of the Spacelab long modules. Also carried was a Spacehab/Energia unpressurized Integrated Cargo Carrier with LCA/MTSAS-A, RU, and PFCS. A sidewall adapter beam with two GAS canisters (G-783 and WSVFM) was also on board. WSVFM measured vibration during launch. Another adapter beam, probably at the rear of the payload bay, carried SEM-9. SEM-9 and G-783 contained high school microgravity experiments.
Leonardo carried 16 'racks' of equipment, including the Human Research Facility Rack (Rack 13) which allowed the astronauts to do extensive medical experiments, the CHeCS Rack (28), the DDCU-1 and DDCU-2 racks (7 and 9), the Avionics-3 (Rack 6), and the MSS Avionics/Lab (Rack 11) and Avionics/Cupola (Rack 12) racks for a total of 7 equipment racks to be installed on Destiny. Three Resupply Stowage Racks (50, 51, 52) and four Resupply Stowage Platforms (180, 181, 182 and 188) remained installed on Leonardo, with their equipment bags being individually transferred to the Station. System Racks 2, 3, 4, 5 and 8 were already on Destiny together with stowage racks 110 through 117. Each rack had a mass of 150-300 kg.
The orbiter fired its OMS engines at 1221 GMT to raise the orbit to 185 x 219 km. Discovery docked with the PMA-2 port on the Station at 0639 GMT on March 10. The LCA (Lab Cradle Assembly) was attached to Destiny's +Z side during an EVA. It was to be used on the next mission to temporarily place a Spacelab pallet on Destiny during installation of the Station's robot arm. Later, it would be the site for the main Station truss, beginning with segment S0.
The PMA-3, on Unity at the -Z nadir position, had to be moved to the port position to make room for Leonardo. An external stowage platform was attached to Destiny and the External Stowage Platform and the PFCS Pump Flow Control System were added to the port aft trunnion on Destiny. A rigid umbilical (RU) was connected to the PDGF grapple fixture on Destiny to support the Station's future robot arm. Leonardo was docked to Unity at -Z for a while so that its cargo could be transferred to the station easily; it was then be returned to the payload bay and brought back to earth.
At 0232 GMT on March 19 command of ISS was transferred to Expedition 2 and the hatches were closed. Discovery undocked at 0432 GMT and flew once around the station before departing at 0548 GMT. ISS mass after undocking was 115527 kg. The OMS engines fired for the deorbit burn at 0625 GMT on March 21, and Discovery touched down on runway 15 at Kennedy Space Center at 0731 GMT.
STS-104 was an American ISS Assembly shuttle flight with a crew of five American astronauts and a major space station module, the Quest Airlock. Orbiter OV-104 Atlantis main engine cutoff and external tank separation was at 0913 GMT. Atlantis was then in an orbit of 59 x 235 km x 51.6 deg. The OMS-2 burn at 0942 GMT increased velocity by 29 m/s and raised the orbit to 157 x 235 km x 51.6 deg and another burn at 1240 GMT raised it further to 232 x 305 km. Atlantis docked with the International Space Station at 0308 GMT on July 14. The main payload on STS-104 was the Quest Joint Airlock, built by Boeing/Huntsville. It consisted of an Equipment Lock for storage and the Crew Lock, based on the Shuttle airlock. The 13,872 kg payload consisted of:
The six tonne Airlock consisted of two cylinders of four meters diameter and a total length six meters. The Airlock could be pressurized by the externally-mounted high pressure oxygen-nitrogen tanks, and was to be the sole unit through which all future EVAs were to take place. (Until that point, all EVA entries/exits had been through a Russian module in ISS, with non-Russians having to wear Russian space suits). Another payload was the "EarthKAM" of middle/high school interest. It was to allow pupils to command picture-taking of chosen spots on Earth; they were expected to target 2,000 spots. The shuttle also carried out pulsed exhaust tests during maneuvers to enable better understanding of the formation of HF echoes from the shuttle exhaust. The echoes were obtained by ground based radars in an experiment called SIMPLEX (Shuttle Ionospheric Modification with Pulsed Local EXhaust). The STS-104 crew returned to Atlantis on July 22, and undocked at 0455 GMT. After flying around the station they departed the vicinity at 0615 GMT. Atlantis landed at 0338:55 GMT on July 25, touching down at Kennedy Space Center runway 15.
ISS Logistics flight, launch delayed from November 30 and December 4. Gorie, Kelley, Godwin, Tani, Onufrikeno, Bursch, Walz STS-108 flew the UF-1 Utilization Flight mission to the International Space Station. The UF designation distinguished this from earlier Station flights which were considered assembly flights. The shuttle would deliver the Expedition-4 crew of Onufrikeno, Bursch, and Walz to the station and return the Expedition-3 crew to earth. In addition to the crew swap, UF-1 brought supplies to the Station aboard the Raffaello module, and Godwin and Tani conducted a spacewalk to add thermal blankets to the gimbals on the Station's solar arrays. Endeavour reached an orbit of approximately 58 x 230 km (according to the NASA PAO) at 2228 GMT. At 2259 GMT it fired its OMS engines to raise perigee to 225 km. Mass after OMS-2 was 114,692 kg. Endeavour soft docked with the International Space Station at 2003 GMT on December 7. Problems with aligning the vehicles delayed hard dock until 20:51 GMT, and the hatch was opened at 22:43 GMT. The Raffaello module was unberthed from Endeavour at 1701 GMT on December 8 and berthed to the Unity module of the station at 1755 UTC.
STS-108 cargo bay payload was dominated by the Raffaello (MPLM-2) logistics module with 4 RSP and 8 RSR resupply racks. Also in the cargo bay were the MACH-1 and LMC experiment trusses flown under the Goddard small payloads program. MACH-1 was an MPESS-type Hitchhiker bridge carrying the CAPL-3 capillary thermal control experiment on top. On its forward side was the Starshine-2 launch canister, the CAPL-3 avionics plate, the Hitchhiker avionics plate, and the SEM-15 canister. On the aft side was the G-761 canister containing experiments from Argentina, the PSRD synchrotron detector (a prototype for the AMS antimatter experiment which will fly on Station later), and the COLLIDE-2 and SEM-11 canisters. The SEM (Space Experiment Modules) are collections of high school experiments. LMC, the Lightweight MPESS Carrier carried four canisters with materials science and technology experiments: SEM-12, G-785, G-064 and G-730. In addition, an adapter beam on the starboard sidewall carried G-221 and G-775, with materials science and biology experiments.
Raffaello was transferred back to the Shuttle payload bay on December 14. Endeavour undocked from the Station at 17:28 UTC on December 15 and made a half loop around the station before making a small separation burn at 1822 UTC. The Starshine-2 reflector satellite was ejected from the MACH-1 bridge in Endeavour's payload bay at 1502 UTC on December 16. Endeavour landed on runway 15 at Kennedy Space Center at 1755 UTC on December 17. The Expedition 3 crew of Culbertson, Dezhurov and Tyurin returned to Earth aboard Endeavour, leaving the Expedition 4 crew of Onufrienko, Bursch and Walz in charge of the Station.
Launch delayed from March 22, April 4. Space Shuttle Atlantis entered an orbit of approximately 59 x 229 km x 51.6 deg at 2052 UTC, and separated from the External Tank, ET-114. ET-114 reached apogee around 2122 UTC and reentered over the Pacific about 2150 UTC at the end of its first orbit. Atlantis fired its OMS engines at apogee to raise its perigee to 155 km. Further orbit changes will lead to a rendezvous with the Space Station on Station mission 8A. STS-110 carried the S0 truss segment to the Station. The truss was the first segment of the main backbone of the Station which was to grow to carry the large solar panel wings and radiators. Cargo manifest:
ISS Assembly flight delayed from March 22, April 4, August 22, September 28, October 2 due to payload delays and then SSME problems. American shuttle spacecraft STS-112 carried a crew of five Americans and one Russian to the International Space Station (ISS). During the 11-day mission, the crew extended the truss system of the exterior rail line with a 14-m, 13-ton girder. The crew also tested a manual cart on the rails. The cart, named CETA (Crew and Equipment Transportation Aid), was designed to increase mobility of crew and equipment during the later installation phases. STS-112 landed back in Cape Canaveral at 15:43 UT on 2002 October 18 carrying the same crew of six.
Return to flight after loss of Columbia. Delayed extensively as NASA attempted to fix the external tank foam-shedding problem that resulted in the loss of Columbia (first planned for September 12, 2004, the launch slipped to March; May 14, 15 and 22; July 13, 2005). Discovery safely reached orbit at a total mass of 121,485 kg, but extensive video coverage detected external tank foam shedding during ascent. Discovery docked at the Pirs module of the ISS on 28 July 28 at 11:18 GMT. Following replenishment of the station (using the Raffaello MPLM-6 module with 8240 kg of supplies), a series of spacewalks verified the integrity of the shuttle's heat shield and tested repair techniques, Discovery undocked from the ISS at 07:24 GMT on 6 August and landed safely on Runway 22 at Edwards Air Force Base at 12:11 GMT on 9 August. However the shuttle fleet was immediately grounded again while NASA attempted to find a permanent fix to the external tank foam woes.
The shuttle was launched using external tank ET-119 and solid motors RSRM-93. Cameras revealed that large chunks of foam were still shed from the external tank during the ascent to orbit. However examination of the heat shield using a new extension and sensors attached to the shuttle's robot arm revealed no significant damage. Discovery docked with the PMA-2 adapter on the Destiny module of the ISS at 14:52 GMT on 6 July. On July 7 the Leonardo cargo module was moved from the shuttle payload bay by the robot arm and docked to the Unity Module of the ISS between 09:42 and 11:50 GMT. The crew then began unloading the spare parts and supplies in the module to the station. A series of three EVAs conducted on 8 to 12 July tested the new equipment and techniques for repairing the shuttle heat shield in case of damage, and did some preliminary installations on the exterior of the ISS to pave the way for continued station assembly missions. On 14 July, the station's SSRMS robot moved the Leonardo module from the station back to the shuttle cargo bay between 13:08 and 14:50 GMT. The shuttle separated from the ISS, and fired its engines at 12:07 GMT on 17 July to make a 92 m/s deorbit maneuver. Discovery landed at the Kennedy Space Center at 13:14 GMT. European astronaut Reiter was left behind to make up part of the EO-13 resident crew on the station.
Atlantis docked with the International Space Station at the PMA-2 port at 10:48 GMT on 11 September. At the Shuttle RMS robot arm connected to the enormous P3/P4 truss in the payload pay and handed it off to the Station's robot arm between 14:52 and 15:03 GMT the same day. The station arm then connected to the P3/P4 truss to the station's P1 truss at 07:27 on 12 September. Three EVA's were made by the shuttle crew over the next three days to complete installation of the truss and deply its solar panels. The Shuttle undocked from the station at 12:50 GMT on 20 September. There was a one-day delay in landing due to weather at the Cape and some concern about several small objects seen floating near the spacecraft. These were believed to be plastic shims that had worked loose from between the tiles and were not a concern. Atlantis landed at Kennedy Space Center at 10:21 GMT on 21 September.
The mission used solid rocket booster pair RSRM-95 and external tank ET-123. At SSME burnout Discovery was in a 58 km x 220 km x 51.6 deg preliminary burn. The OMS-2 burn at 02:25 GMT placed the shuttle in a stable 225 x 250 km orbit from which rendezvous maneuvers began. Discovery docked with the ISS at 22:12 GMT on December 11. In the most demanding ISS assembly mission ever, the crew would require an additional spacewalk to complete installation of the P5 truss, retraction of the recalcitrant port P6 solar array wing, and activation of the truss electrical and cooling system. Sunita Williams rode the shuttle to the station, and remained behind with the EO-14 crew; ESA astronaut Thomas Reiter, already aboard the station, was returned to earth. Due to weather problems a landing at White Sands was considered; but in the end Discovery landed safely at Kennedy Space Center, after which it was to enter a year-long overhaul cycle.
First flight test of the Ares/Constellation program. The Ares I-X rocket consisted of the modified Shuttle RSRM-91A solid rocket booster, a dummy Upper Stage Simulator, and a dummy Ares command module / launch abort system. It was launched from the newly modified LC39B at Kennedy Space Center to test the aerodynamics of the vehicle within the atmosphere and provide real-world data to ameliorate concerns regarding the vibration level created by the SRB for any crew in a future mission. The SRB reached 46 km altitude before descending to the Atlantic for recovery.