Apollo command module boilerplate model BP-1 was accepted by NASA and delivered to the NAA Engineering Development Laboratory for land and water impact tests. On September 25, BP-1 was drop-tested with good results. Earth-impact attenuation and crew shock absorption data were obtained.
At Downey, Calif., MSC and North American officials conducted a mockup review on the Block I CSM. Major items reviewed were:
For the first time, three representative Apollo space suits were used in the CM couches. Pressurized suit demonstrations, with three suited astronauts lying side by side in the couches, showed that the prototype suit shoulders and elbows overlapped and prevented effective operation of the CM displays and controls. Previous tests, using only one suited subject, had indicated that suit mobility was adequate. Gemini suits, tested under the same conditions, proved much more usable. Moreover, using Gemini suits for Apollo earth orbital missions promised a substantial financial saving. As a result of further tests conducted in May, the decision was made to use the Gemini suits for these missions. The existing Apollo space suit contract effort was redirected to concentrate on later Apollo flights. A redesign of the Apollo suit shoulders and elbows also was begun.
MSC established the configuration of the reaction control system engines for both the service module (SM) and the LEM, and informed North American and Grumman accordingly. The Center also directed North American to propose a design for an electric heater that would provide thermal control in lunar orbit and during contingency operations. The design would be evaluated for use in Block I spacecraft as well.
On the basis of reentry simulations, North American recommended several CM instrument changes. An additional reaction control system display was needed, the company reported. Further, the flight attitude and the stabilization and control system indicators must be modified to warn of a system failure before it became catastrophic. The entry monitor system for Block I spacecraft would have to be replaced and the sample g-meter was not wholly satisfactory.
Crew Systems Division (CSD) engineers evaluated the radiator for the environmental control system in Block I CSM's. The division was certain that, because of that item's inadequacy, Block I missions would have to be shortened.
During the same period, however, the Systems Engineering Division (SED) reported "progress" in solving the radiator problem. SED stated that some "disagreement" existed on the radiator's capability. North American predicted a five-day capability; CSD placed the mission's limit at about two days. SED ordered further testing on the equipment to reconcile this difference.
During testing, it was found that blast effects of the linear charge for the CM/SM umbilical cutter caused considerable damage to the heatshield. To circumvent this problem, North American designed a vastly improved pyrotechnic-driven, guillotine-type cutter. MSC readily approved the new' device for both Block I and II spacecraft.
ASPO and the MSC Instrumentation and Electronic Systems Division (IESD) formulated a program for electromagnetic compatibility testing of hardware aboard the CSM and LEM. The equipment would be mounted in spacecraft mockups, which would then be placed in the Center's anechoic chamber. In these tests, scheduled to begin about the first of September, IESD was to evaluate the compatibility of the spacecraft in docked and near-docked configurations, and of Block I spacecraft with the launch vehicle. The division was also to recommend testing procedures for the launch complex.
Using a mockup Apollo CM, MSC Crew Systems Division tested the time in which an astronaut could don and doff the Block I pressure garment assembly while at various stations inside the spacecraft. The two subjects' average donning times were nine min 33 sec and 10 min; mean doffing times were four min five sec and five min 23 sec.
To prevent radiator freezing - and consequent performance degradation - in the Block I environmental control system, MSC ordered North American to supplement the system's coolant. Forty-five kg (100 lbs) of water would be stored in the SMs of airframes 012 and 014.
Avco found that cracking of the ablator during cure was caused by incomplete filling, leaving small voids in the material. The company ordered several changes in the manufacturing process: a different shape for the tip of the "filling gun" to facilitate filling those cells that were slightly distorted; manual rather than automatic retraction of the gun; and x-raying of the ablator prior to curing. Using these new methods, Avco repaired the aft heatshield and toroidal corner of airframe 006, which was then re-cured. No cracking was visible. The crew compartment heatshield for airframe 009 came through its cure equally well. Voids in the ablator had been reduced to about two percent. "It appears," Structures and Mechanics Division reported, "that the problem of cracking . . . has been solved by better manufacturing."
MSC directed North American to include nine scientific experiments on SA 204/Airframe 012: cardiovascular reflex conditioning, bone demineralization, vestibular effects, exercise ergometer, inflight cardiac output, inflight vector cardiogram, measurement of metabolic rate during flight, inflight pulmonary functions, and synoptic terrain photography. On June 25, the last five experiments were deleted and a cytogenic blood studies experiment was added.
North American dropped boilerplate 1 twice to measure the maximum pressures the CM would generate during a high-angle water impact. These figures agreed quite well with those obtained from similar tests with a one-tenth scale model of the spacecraft, and supported data from the model on side wall and tunnel pressures.
North American began a series of water impact tests with boilerplate 1 to obtain pressure data on the upper portions of the CM. Data on the side walls and tunnel agreed fairly well with those obtained from 1/10 scale model drops; this was not the case with pressures on the top deck, however.
North American presented final results of their modification to the electrical power system for spacecraft 011 to solve the power and energy problem. This consisted of the addition of three batteries which would be mounted on the center platform and used to supply instrumentation and mission control programmer loads during flight. These batteries would be paralleled with the entry and landing batteries at impact to provide power for postlanding recovery loads. MSC concurred with this approach.
To evaluate the Block 11 CSM's manual thrust vector control, five pilots, among them two astronauts, flew the Apollo simulator at Honeywell. These mock flights demonstrated that the manual control was sufficiently accurate for transearth injection. Also, researchers determined that the optical alignment sight provided the crewmen with attitude references adequate for midcourse maneuvers.
Two CSM fuel cells failed qualification testing, the first failing after 101.75 hrs of the vacuum endurance test. Pratt and Whitney Aircraft determined that the failure was caused by a cleaning fluid which contaminated and plugged the oxygen lines and contaminated the oxygen gas at the electrodes. Additional Details: here....
At the initial design engineering inspection (DEI) of Spacecraft 009, held at Downey, California, MSC and North American officials reviewed the compatibility of the vehicle with SA-201 mission requirements. The DEI Review Board approved 11 hardware changes and assigned 26 others for further study.
Joseph F. Shea, ASPO Manager, approved Crew Systems Division's recommendation to retain the "shirtsleeve" environment for the CM. The design was simpler and promised greater overall mission reliability; also, it would be more comfortable for the crewmen. Additional Details: here....
MSC directed North American to provide spacecraft 012, 014, 017, and 020 with a system to monitor combustion instability in the service propulsion engine. (On April 8, officials of ASPO, Propulsion and Power Division, and the Flight Operations Directorate had agreed on the desirability of such a system.) Should vibrations become excessive, the device would automatically shut down the engine. Manual controls would enable the astronauts to lock out the automatic system and to restart the engine.
Structures and Mechanics Division engineers determined that the spacecraft-LEM-adapter would not survive a service propulsion system abort immediately after jettisoning of the launch escape tower. North American planned to strengthen the upper hinges and fasteners and to resize the shock attenuators on spacecraft 009.
North American released a preliminary report, "Apollo Reliability Modeling Documentation," in response to an action item assigned to MSC by the President's Scientific Advisory Committee (PSAC) Space Technology Panel at an Apollo program reliability briefing for the panel in January. Additional Details: here....
North American conducted the third in a series of water impact tests on boilerplate 1 to measure pressures on forward portions of the spacecraft. Data from the series supported those from tests with one- tenth scale models of the CM. The manufacturer reported, therefore, that it planned no further full-scale testing.
At North American's drop facility, a malfunction in the release mechanism caused boilerplate 1 to impact on land rather than water. After a recurrence of this accident on August 6, a team of investigators began looking into the problem. Drops were suspended pending their findings. These incidents aggravated delays in the test program, which already was seven weeks behind schedule.
Ralph S. Sawyer, Chief of the Instrumentation and Electronic Systems Division, advised ASPO Manager Shea of current problems with antennas for the Apollo spacecraft:
Pressure loading and thermal tests were completed on the types of windows in the Block I CM. The pressure tests demonstrated their ability to withstand the ultimate stresses (both inward and outward) that the CM might encounter during an atmospheric abort. The thermal simulations qualified the windows for maximum temperatures anticipated during reentry at lunar velocities.
On August 26, the attachments for the pilot parachute mortar had failed during static testing on CM 006. The fittings had been redesigned and the test was not repeated. This test, the final one in the limit load series for the earth landing system, certified the structural interface between the CM and the earth landing system for the 009 flight.
Apollo spacecraft 009, first of the type that would carry three astronauts to the moon and back, was accepted by NASA during informal ceremonies at North American. Spacecraft 009 included a CM, SM, launch escape system, and adapter. It went to Cape Canaveral for integration with the first Saturn IB (Saturn IB and SIVB stages received August 1965). The spacecraft was stacked on the launch vehicle on 26 December.
Samuel C. Phillips, Apollo Program Director, notified the Center directors and Apollo program managers in Houston, Huntsville, and Cape Kennedy that OMSF's launch schedule for Apollo-Saturn IB flights had been revised, based on delivery of CSMs 009 and 011:
North American completed static structural tests on the forward heatshield for the Block I CM (part of the certification test network for airframes 009, 011, and 012), thus demonstrating the heatshield's structural integrity when jettisoned (at the start of the earth landing system sequence).
While delivering Apollo SM 009, the Pregnant Guppy aircraft was delayed at Ellington Air Force Base, Texas, for three-and-a-half days while waiting for an engine change. In view of the delay of the SM, the incident was reviewed during the succeeding weeks, and Aero Spacelines was requested to place spare engines not only at Houston, but also at other strategic locations on the normal air route from Long Beach, Calif., to KSC.
North American informed MSC of a fire in the reaction control system (RCS) test cell during a CM RCS test for spacecraft 009. The fire was suspected to have been caused by overheating the test cell when the 10 engines were activated, approximately 30 sec prior to test completion. An estimated test delay of two to three weeks, due to shutdown of the test cell for refurbishment, was forecast. MSC informed the Apollo Program Director that an investigation was underway.
The Manned Spacecraft Center (MSC) Checkout and Test Division was informed by the Flight Crew Operations Director that in reference to a request for "...our desires for altitude chamber runs on Apollo spacecraft, we definitely feel three runs are mandatory on CSMs 012 and 014". Additional Details: here....
NASA Hq. told MSC that delivery changes should be reflected in manned space flight schedules as controlled milestone changes and referred specifically to CSM 008 - April 1966; CSM 011 - April 15, 1966; and CSM 007 - March 31, 1966. Headquarters noted that the "NAA (North American Aviation Inc.) contract delivery date remains 28 February 1966" for each and that "every effort should be made to deliver these articles as early as possible, since completion of each is constraining a launch or other major activity."
Spacecraft 007 and 011 were delivered to NASA by North American Aviation. Spacecraft 007 was delivered to Houston to be used for water impact and flotation tests in the Gulf of Mexico and in an environmental tank at Ellington AFB. It contained all recovery systems required during actual flight and the total configuration was that of a flight CM.
The CM of spacecraft 011 was similar to those in which astronauts would ride in later flights and the SM contained support systems including environmental control and fuel cell systems and the main service propulsion system. Spacecraft 011 was scheduled to be launched during the third quarter of 1966.
MSC Deputy Director George M. Low submitted information to NASA Associate Administrator for Manned Space Flight George E. Mueller on manpower requirements and operating costs for testing in MSC's large thermal vacuum chamber. Spacecraft 008 testing reflected a manpower cost (civil service and contractor) of $7,034,000, chamber operating cost of $321,000, and material costs of $277,000. The spacecraft had been in the chamber 83 days, during which time a 92-hour unmanned test and a 163-hour manned test had been conducted.
Apollo Program Director Samuel C. Phillips was informed of increasing engineering orders for spacecraft 012. C. H. Bolender, OMSF Mission Operations Deputy Director, reported information received from John G. Shinkle, Kennedy Space Center Apollo Program Manager, on October 10. Additional Details: here....
William W. Petynia, MSC, was given ASPO responsibility for use of the spacecraft 012 service module in nonflight support of the Apollo program when the Apollo 204 Review Board released the SM from - further investigation. It was to be used in subsystem tests or tests of the complete module.
MSC ASPO reported to NASA Hq. that, because of many wiring discrepancies found in Apollo spacecraft 017, a more thorough inspection was required, with 12 main display control panels to be removed and wiring visually inspected for cuts, chafing, improper crimping, etc. Additional Details: here....
MSC informed Kennedy Space Center that, on release of the 012 service module from further investigation, the MSC Apollo Spacecraft Program Office would use it for program support. ASPO was establishing tests and test locations and asked KSC to deactivate SM systems and store the SM in a remote area for up to four weeks.
Because of the amount of flammable material in spacecraft 017 and 020, MSC decided to purge these two spacecraft on the pad with gaseous nitrogen. The total amount of oxygen in the spacecraft at time of reentry would not exceed 14 percent. No tests would be conducted on these spacecraft with hatches closed when men were in the spacecraft.
During operational checkout procedures on CSM 017, which included running the erasable memory program before running the low-altitude aborts, the guidance and navigation computer accidentally received a liftoff signal and locked up. Investigation was initiated to determine the reason for the liftoff signal and the computer lockup (switch to internal control). No damage was suspected.