Home - Search - Browse - Alphabetic Index: 0- 1- 2- 3- 4- 5- 6- 7- 8- 9
A- B- C- D- E- F- G- H- I- J- K- L- M- N- O- P- Q- R- S- T- U- V- W- X- Y- Z
N1 Nuclear A
Part of N1
Russian nuclear orbital launch vehicle. A version of the N1 with a nuclear upper stage was studied by Korolev in 1963. It was concluded that the optimum design would allow a single N1 to launch a direct manned lunar landing and return. However for manned Mars missions, a nuclear electric engine was found to be much more efficient. This essentially killed further consideration of thermal nuclear upper stages within the bureau.

Status: Study 1963. Payload: 270,000 kg (590,000 lb). Thrust: 35,000.00 kN (7,868,000 lbf). Gross mass: 2,400,000 kg (5,200,000 lb). Height: 180.00 m (590.00 ft). Diameter: 17.00 m (55.00 ft). Apogee: 220 km (130 mi).

Following abandonment of the nuclear-ammonia ICBM projects, the engine bureaus of Bondaryuk (OKB-670) and Glushko (OKB-456) continued study of nuclear propulsion, but using liquid hydrogen for upper stage applications. Engines of 200 metric tons and 40 metric tons thrust with a specific impulse of 900 to 950 seconds were being considered. At the end of 1961 both bureaus completed their draft projects and it was decided to continue work on development of an engine in the 30 to 40 metric ton thrust range. In the following year Korolev was asked to study application of such engines, followed by a specific demand in May 1963 from the Scientific-Technical Soviet for specific recommendations.

Korolev considered three variants based on the N1:

Considered for each case were nuclear engine designs Type A (18 metric tons thrust, 4.8 metric tons mass), AF (20 metric tons thrust, 3.25 metric tons mass), V (40 metric tons thrust, 18 metric tons mass), and V with a bioshield for use on manned flights (40 metric tons thrust, 25 metric tons mass).

The study concluded that the two stage vehicle was the most promising. Compared to an equivalent vehicle using liquid oxygen/liquid hydrogen, mass in low earth orbit would be more than doubled. Optimal stage size was 700 to 800 metric tons for the Type A engines and 1,500 to 2,000 metric tons for the type V engines (this resulted in a halaciously large number of nuclear engines by Western standards). Use of the nuclear stage would result in a single N1 launch being able to launch a round-trip lunar landing (mass landed on lunar surface over 24 metric tons with return of a 5 metric ton capsule to earth).

For a Mars expedition, it was calculated that the AF engine would deliver 40% more payload than a chemical stage, and the V would deliver 50% more. But Korolev's study also effectively killed the program by noting that his favored solution, a nuclear electric ion engine, would deliver 70% more payload than the Lox/LH2 stage.

Further investigation of nuclear thermal stages for the N1 does not seem to be pursued. Bondaryuk and Glushko turned to Chelomei and his competing UR-700 rocket for future application of such stages.

LEO Payload: 270,000 kg (590,000 lb) to a 220 km orbit at 51.60 degrees. Payload: 24,600 kg (54,200 lb) to a lunar surface.

Stage Data - N1 Nuclear A



Subtopics

N1 Nuclear A stage Nuclear/LH2 propellant rocket stage. N1 nuclear upper stage study, 1963. Figures calculated based on given total stage thrust, specific impulse, engine mass.

N1 Nuclear AF stage Nuclear/LH2 propellant rocket stage. N1 nuclear upper stage study, 1963. Figures calculated based on given total stage thrust, specific impulse, engine mass.

Family: nuclear-powered, orbital launch vehicle. Country: Russia. Engines: NK-15, YaRD Type A. Stages: N1 1962 - A, N1 Nuclear A stage. Agency: Korolev bureau.

Back to top of page
Home - Search - Browse - Alphabetic Index: 0- 1- 2- 3- 4- 5- 6- 7- 8- 9
A- B- C- D- E- F- G- H- I- J- K- L- M- N- O- P- Q- R- S- T- U- V- W- X- Y- Z
© 1997-2019 Mark Wade - Contact
© / Conditions for Use