Encyclopedia Astronautica
Proton 11S824F


Lox/Kerosene propellant rocket stage. Loaded/empty mass 16,900/1,800 kg. Thrust 85.02 kN. Vacuum specific impulse 352 seconds. Also known as Block D-2; article number 11S824F. Without guidance unit (navigation commands come from payload). Successor to 11S824M. Used for launch of Lavochkin Mars-bound spacecraft in 1988 and 1996.

Cost $ : 4.000 million.

AKA: 11S824; Block D; D-1-e.
Status: Retired 1996.
Gross mass: 16,900 kg (37,200 lb).
Unfuelled mass: 1,800 kg (3,900 lb).
Height: 5.50 m (18.00 ft).
Diameter: 3.70 m (12.10 ft).
Span: 3.70 m (12.10 ft).
Thrust: 85.02 kN (19,113 lbf).
Specific impulse: 352 s.
Burn time: 610 s.
Number: 10 .

More... - Chronology...


Associated Countries
Associated Engines
  • 11D79 Stepanov N2O4/UDMH rocket engine. 44 kN. Blok D SOZ. In Production. Thrust 1.1-4.5 tf variable. More...
  • RD-58M Korolev Lox/Kerosene rocket engine. 83.4 kN. Proton 8K824K / 11S824M; 11S824F; 11S86; 11S861; 17S40 stage 4 (block DM). In production. Isp=353s. First flight 1974. More...

Associated Launch Vehicles
  • Proton-K/D-2 Russian orbital launch vehicle. This four stage version of the Proton was a modification of the original Block D / 11S824M for launch of late 1980's Lavochkin OKB probes on missions to Mars. Guidance to the Block D-2 stage must be supplied by spacecraft. More...

Associated Propellants
  • Lox/Kerosene Liquid oxygen was the earliest, cheapest, safest, and eventually the preferred oxidiser for large space launchers. Its main drawback is that it is moderately cryogenic, and therefore not suitable for military uses where storage of the fuelled missile and quick launch are required. In January 1953 Rocketdyne commenced the REAP program to develop a number of improvements to the engines being developed for the Navaho and Atlas missiles. Among these was development of a special grade of kerosene suitable for rocket engines. Prior to that any number of rocket propellants derived from petroleum had been used. Goddard had begun with gasoline, and there were experimental engines powered by kerosene, diesel oil, paint thinner, or jet fuel kerosene JP-4 or JP-5. The wide variance in physical properties among fuels of the same class led to the identification of narrow-range petroleum fractions, embodied in 1954 in the standard US kerosene rocket fuel RP-1, covered by Military Specification MIL-R-25576. In Russia, similar specifications were developed for kerosene under the specifications T-1 and RG-1. The Russians also developed a compound of unknown formulation in the 1980's known as 'Sintin', or synthetic kerosene. More...

Home - Browse - Contact
© / Conditions for Use